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Orderly structure in jet turbulence 

By S. C. CROW AND F. H. CHAMPAGNE 
The Boeing Company, Seattle, Washington 

(Received 23 October 1970) 

Past evidence suggests that a large-scale orderly pattern may exist in the noise- 
producing region of a jet. Using several methods to visualize the flow of round 
subsonic jets, we watched the evolution of orderly flow with advancing Rey- 
nolds number. As the Reynolds number increases from order lo2 to 103, the 
instability of the jet evolves from a sinusoid to a helix, and finally to a train of 
axisymmetric waves. At a Reynolds number around lo4, the boundary layer 
of the jet is thin, and two kinds of axisymmetric structure can be discerned: 
surface ripples on the jet column, thoroughly studied by previous workers, and 
a more tenuous train of large-scale vortex puffs. The surface ripples scale on the 
boundary-layer thickness and shorten as the Reynolds number increases 
toward lo5. The structure of the puffs, by contrast, remains much the same: 
they form at an average Strouhal number of about 0.3 based on frequency, 
exit speed, and diameter. 

To isolate the large-scale pattern at Reynolds numbers around lo5, we 
destroyed the surface ripples by tripping the boundary layer inside the nozzle. 
We imposed a periodic surging of controllable frequency and amplitude at the 
jet exit, and studied the response downstream by hot-wire anemometry and 
schlieren photography. The forcing generates a fundamental wave, whose 
phase velocity accords with the linear theory of temporally growing instabilities. 
The fundamental grows in amplitude downstream until non-linearity generates 
a harmonic. The harmonic retards the growth of the fundamental, and the two 
attain saturation intensities roughly independent of forcing amplitude. The 
saturation amplitude depends on the Strouhal number of the imposed surging 
and reaches a maximum at a Strouhal number of 0.30. A root-mean-square 
sinusoidal surging only 2 % of the mean exit speed brings the preferred mode to 
saturation four diameters downstream from the nozzle, a t  which point the en- 
trained volume flow has increased 32 % over the unforced case. When forced 
at a Strouhal number of 0.60, the jet seems to act as a compound amplifier, 
forming a violent 0-30 subharmonic and suffering a large increase of spreading 
angle. We conclude with the conjecture that the preferred mode having a 
Strouhal number of 0.30 is in some sense the most dispersive wave on a jet 
column, the wave least capable of generating a harmonic, and therefore the wave 
most capable of reaching a large amplitude before saturating. 
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1. Introduction 
We set out to find whether jet turbulence is orderly in any sense, and whether 

the order can be enhanced and controlled by a slight periodic surging imposed 
at  the jet exit. The technological motivation for the study was jet noise. To 
the extent that turbulent mixing can be accomplished by an orderly process, 
a new range of noise-suppression techniques becomes available, and the prob- 
lem of predicting jet noise becomes much simpler. 

How does the disorder usually attributed to turbulence originate? One 
approach to an answer is to consider why a vorticity-free potential flow is 
not necessarily random. An incompressible potential flow is determined a t  each 
instant by conditions on the boundary. In  principle, an experimentalist could 
establish or annihilate any incompressible potential flow instantaneously by a 
suitable change in the boundary conditions. He need not reach within the bound- 
ary to control the motion. Furthermore, the potential at an interior point is a 
weighted average of the potential over the boundary, so a local irregularity on 
the boundary has only a local effect inside. From instant to instant, the gross 
features of the boundary conditions control the gross character of an incornpres- 
sible potential flow within. 

The situation changes fundamentally if vorticity sheds from the boundary 
into the flow, as occurs continuously from a jet orifice. The flow no longer 
depends strictly upon instantaneous surface conditions, and the experimentalist 
cannot control the rotational part of the velocity field by taking action at the 
boundary. He has lost control over the $ow. The velocity at  an interior point, 
moreover, can depend sensitively on a nearby element of vorticity and is no 
longer a smooth average. The flow now depends not merely on instantaneous 
surface conditions, but on the entire history of vortex shedding from the 
boundary in all detail. In order to restore control, the experimentalist must 
either control the three-dimensional vorticity field directly by means of body 
forces, or control the entire history of the boundary conditions, which is the 
alternative adopted in this study. Usually neither is attempted, and the flow 
gives way to chaos. 
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Despite the loss of control, the boundary conditions and mean-flow character- 
istics may still dispose the turbulence to acquire a somewhat orderly pattern, 
at least with respect to the largest scales of motion. Some classical theories of 
turbulent shear flow are based on that idea. Reynolds (1894) derived the original 
criterion for turbulence in a channel by calculating the exchange of energy 
between the mean flow and a train of sinusoidal eddies. Malkus (1956) based his 
channel-flow theory on the eigenmodes of the stability problem for the mean 
flow rather than an ad hoc sinusoidal eddy shape. The theory bearing most 
directly on the present work is that of Landahl (1967), who argued that the 
random component of boundary-layer turbulence excites relatively coherent 
and long-lived waves, the most lightly damped eigenmodes of the linear stability 
problem. The turbulence plays two roles, as a random exciter of waves, and as an 
ensemble of the waves themselves. 

There is also a body of experimental evidence for orderly structure in turbu- 
lent flows, even at extremely large Reynolds numbers. The Karman vortex 
street disintegrates at Reynolds numbers above 2 x lo5 and was thought to be 
associated with moderate Reynolds numbers only. At a Reynolds number of 
3-5 x lo6, however, Roshko (1961) found that the vortex street behind a circular 
cylinder reappears with much the same structure as at  moderate Reynolds 
numbers. In  their flow-visualization experiments on turbulent boundary layers, 
Kline, Reynolds, Schraub & Runstadler (1967) discovered that turbulence 
production occurs in definite bursts near the wall. Presumably the bursts 
involve rapid stretching of vortex loops shed from the viscous sublayer. In any 
case, the bursts have a common structure and are random chiefly with respect to 
their origin in space and time. 

The study of orderly jet fluctuations began during an evening of chamber 
music in the mid-nineteenth century. Among the audience was a medical 
doctor knowledgeable in acoustics, who noticed a gas flame dance in response 
to the violoncello so that ‘ a  deaf man might have Seen the harmony’ (Leconte 
1858). The phenomenon attracted the attention of Tyndall (1867), who showed 
that ignition is not essential; any jet on the verge of becoming turbulent is 
sensitive t o  musical notes. The explanation of sensitive jets is due to Rayleigh 
(1896). The vortex sheet surrounding a jet column is unstable, so a sound 
wave passing the jet exit excites a train of interfacial waves on the column. 
The waves promote transition to turbulence and enhance mixing. Rayleigh 
could draw no certain conclusion about the precise shape of the waves, whether 
the column becomes sinuous or pulsatile, and the question has remained open 
since (cf. Reynolds 1962). 

Questions of detail aside, it  was clear by the turn of the century that sensi- 
tivity resides in an orderly oscillation of the jet column. The nineteenth-century 
workers dealt with Reynolds numbers around lo3, however, and it may be 
wondered whether any order persists at the far greater Reynolds numbers of 
current technological interest. A degree of order can be inferred from casual 
observations of turbo-jet exhausts, which often appear to disintegrate into 
trains of loosely packed puffs of smoke. More reliable evidence is a schlieren 
photograph of a turbulent jet published by Bradshaw, Ferriss & Johnson (1 964) 
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and reproduced here with their kind permission as figure 1 (plate 1) .  The jet 
emerged with a speed of 280 ft/sec, uniform across the 2 in. diameter exit plane. 
The corresponding Reynolds number was about 3 x lo5 based on diameter, and 
the Mach number was sufficiently low that the flow can be considered incompres- 
sible. The change in refractive index was achieved by injecting Freon-12 gas into 
the plenum upstream of the jet. Beneath the stippled chaos of the fine mixing- 
layer turbulence, one can discern a train of large-scale puffs or waves. 

Jet  noise itself provides some evidence for natural organized structure. 
Mollo-Christensen ( 1967) observed that pressure fluctuations outside a fully 
turbulent jet column come in rather well-defined wave packets, as though the 
column were undergoing sporadic oscillations. Unlike most turbulent velocity 
spectra, the jet-noise spectrum has a distinct peak, at a Strouhal number of 
about 0-3 based on frequency, exit speed, and diameter, the exact Strouhal 
number depending on angle from the jet axis (Mollo-Christensen, Kolpin & 
Martuccelli 1964). The existence of a peak suggests that an underlying wave 
structure may be responsible for much of the sound. 

Encouraged by the available evidence, we undertook experiments on round 
turbulent jets. The Mach number was always very small, not so severe a restric- 
tion, because compressibility does not alter the structure of jet turbulence until 
the mean flow greatly exceeds the speed of sound (Ffowcs Williams 1963). We 
began with the flow-visualization experiments reported in $2. An orderly axi- 
symmetric pattern was evident for Reynolds numbers between several hundred 
and perhaps 7 x 104, above which no method of visualization gave results better 
than those of Bradshaw et al. (figure 1). The next step was to modify the appar- 
atus as described in 0 3 so that a sinusoidal surging could be imposed at  the exit 
plane. We thereby assumed partial control over the history of the boundary 
conditions in the hope of overriding the natural tendency toward chaos at high 
Reynolds numbers. Even when the boundary layer at the exit was tripped 
and fully turbulent, axisymmetric modes of organized flow could be excited 
and raised to high amplitude above the random background. The mode having 
a Strouhal number of 0.30 could attain an especially high amplitude. The 
structure of that preferred mode is discussed in 0 4, and 0s 5-7 explain how a non- 
linear cascade establishes the Strouhal-number preference. The influence of the 
preferred mode on the mean field and on uncontrollable background turbulence 
is described in $8. 

When no periodic surging is imposed, then background turbulence may 
trigger organized modes at random in the spirit of Landahl (1967), but the 
mechanism for selecting the dominant mode is different. All modes in a turbulent 
boundary layer are damped according to linear stability theory, so Landahl 
assumed that the most lightly damped mode would prevail. In  the case of a 
round jet with a top-hat exit profile, all modes amplify, and the higher the fre- 
quency, the faster the amplification. But all modes saturate owing to a non- 
linear cascade, and the mode having a Strouhal number of 0.30 has the highest 
accessible amplitude. 

The relation between the orderly structure and linear stability theory is 
discussed in 0 9, and some speculations about non-linear amplitude saturation 
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are offered in $10, which concludes the paper. It is worthwhile laying to rest 
a question here, whether the phenomenon under study consists of eddies or waves 
(cf. Moffatt 1969). We shall move freely between both kinds of description, 
sometimes calling the orderly structure a vortex train, and sometimes waves on 
a jet column. The two descriptions are entirely complementary as far as jet 
turbulence is concerned. Wave terminology conveys the fact that the periodic 
structure obeys the dispersion relation for linearized waves on a jet column 
(Batchelor & Gill 1962), whereas eddy terminology emphasizes the amplitude 
saturation resulting from a non-linear cascade. 

2. Flow-visualization experiments 
Viscosity influences jet turbulence primarily by affecting the boundary layer 

shed from the nozzle (Bradshaw 1966). The boundary layer depends on the 
contraction upstream of the nozzle, as well as on the Reynolds number based on 
exit speed and diameter. At a sufficiently low Reynolds number, however, the 
boundary layer of any nozzle is so thick that the exit profile resembles a 
Poiseuille pipe flow. We therefore began with qualitative experiments on a 
water jet having Poiseuille-flow exit conditions. 

The jet issued from a horizontal 9 in. long glass tube submerged several 
inches in a large water trough. The inside diameter of the tube was 0.25 in., 
and the flow rates were of order 1 ft/sec. Water for the jet was drawn from a 
tap and sent through a fluorescein-dye injector before entering the tube, so the 
jet could be seen as a bright yellow column against the black bottom of the 
trough. To prevent the trough filling with dye under continuous operation, a 
cup-shaped collector was located several inches downstream from the jet and 
connected to a drain. Except at  the lowest flow rates, the jet appeared chaotic 
under normal illumination, but a stroboscope revealed the underlying order for 
Reynolds numbers up to about 2.5 x 103, where the pipe flow itself became 
turbulent. 

The first sign of instability was the sinuous, whiplash motion sketched in 
figure 2 (a). The remaining parts of the figure show how the instability evolves 
with advancing Reynolds number. Flow rates were not measured accurately, 
and the drawings cannot be associated with specific Reynolds numbers. It is 
sufficient to note that the evolution from sinuous to pulsatile flow is complete 
at a Reynolds number of order lo3. As the Reynolds number advances 
toward that value, the sinuous column coils into a corkscrew shape (b),  then 
tightens and forms bulbous lobes rather l i e  a crankshaft (c), and finally breaks 
into a train of axisymmetric puffs (d). The helical types of instability could have 
either sense of revolution and would switch at  random from one to the other 
when the tap was turned on and off. The evolution from a sinuous to a pulsatile 
instability was smooth and continuous, without the variety of motion seen by 
Reynolds (1962), whose vertical dye jet may have been slightly buoyant. By 
moving our horizontal jet up toward the surface, we could see water waves 
radiating outward from above the region of puff formation. The chaotic turbu- 
lence further downstream did not appear to be a strong source of waves. 
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Presumably because of their dispersive character, the waves were confined to 
narrow sectors at  45' to the jet axis. The dye jet and the synchronized waves on 
the surface above were beautiful under stroboscopic illumination and can be 
recommended as a lecture-room analogue of jet-noise production. 

The Reynolds number of the dye jet could not be driven far above order 
103 before the pipe flow itself became turbulent, so we turned to the air jet 
shown schematically in figure 3. Not shown are an air conditioner capable of 

FIGURE 3. Evolution of jet instability with advancing Reynolds number. Parts (a)-(d)  
span the Reynolds-number interval from around lo2 to los. 

holding the jet temperature to within 1 O F  of the room temperature for hot- 
wire studies, a primary air filter, and a 1-5 hp centrifugal blower. Air from the 
blower enters a short diffuser S, is cleaned by an electrostatic precipitator P, 
passes through a throttle valve V and into a 46 in. long wooden box B, then 
passes through a 50in. diffuser of 6" half-angle into a plenum chamber C 
36 in. long and 12 in. in diameter. The wooden box contains two plastic grids 
for mixing purposes, and there are two fine screens in the plenum as shown. The 
use of the loud-speaker L is described in 0 3. A nozzle N having a 12 : 1 diameter 
contraction was used for the present flow-visualization experiments, the exit 
diameter D of the jet being 1 in. (the schematic shows a 2 in. jet used for later 
hot-wire studies). A laminar boundary layer surrounds the jet column, which 
emerges with a top-hat velocity profile and a O.lyo turbulence level. The jet 
can be driven up to a speed U, of about 220 ft/sec. 

In consideration of ambient. room drafts, we decided not to run the jet below 
20ft/sec, corresponding to a Reynolds number Re of about lo4, where 
Re = U,D/v, and v is the kinematic viscosity of air. We therefore could not ex- 
plore the Reynolds-number range lo3-lo4, but fortunately excellent photographs 
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have been taken in that range by Brown (1935) of a two-dimensional jet 
and by Becker & Massaro (1968) of the axisymmetric case. Becker & Massaro 
observed axisymmetric waves on the jet column for Reynolds numbers up to 
about lo4, beyond which the flow appeared to degenerate into chaos. Their 
nozzle was fed by a long pipe, however, having a diameter only 3.8 times that 
of the jet. It is easy to show from continuity that the Reynolds number of the 
pipe would have been 104/3*8 = 2-6 x lo3 based on mean flow speed, when the 
Reynolds number of the jet itself was lo4. Natural transition in a pipe occurs 
at  a Reynolds number of about 2.6 x lo3, so the loss of order may have been 
caused by transition upstream of the nozzle. 

L 

FIGURE 3. Schematic of the jet facility, which is about 16 f t  long. The dotted lines 
represent grids or screens, and the labelled parts are described in the text. 

Figure 4(a) (plate 2) is a schlieren spark photograph of our air jet under the 
conditions D = 1 in., U, = 36 ftfsec, and Re = 1-87 x lo4. The photographic 
technique was similar to that of Bradshaw et al. (figure 1, plate 1) except that 
the jet was seeded with C 0 2  rather than Freon and the knife edge was vertical 
instead of horizontal. The spark duration was about 1 psec, and high contrast 
Type 51 Polaroid film was used. The flow within the first four diameters of the 
nozzle is dominated by organized axisymmetric structure, including short inter- 
facial waves near the nozzle, and two large-scale puffs further downstream. 
The puffs look rather like the underlying structure one seems to discern in 
figure 1. If orderly structure exists beyond the first four diameters, it is obscured 
by a finely textured sheath of CO,. Figure 4 ( b )  is a similar photograph taken 
under the conditions U, = 102 ftlsec and R e  = 5.27 x lo4. The ripples on the 
laminar boundary layer have shortened but are still clearly visible. Any large- 
scale structure that may exist downstream, however, is masked by a fine-grained 
mixture of CO, and air surrounding the jet. A schlieren image emphasizes fine 
detail, though not nearly so much as a shadowgraph. Jet-noise production, on 
the contrary, is heavily biased toward large-scale eddies (Ffowcs Williams 1963). 
We needed another method of visualization to search for large-scale order at  
higher Reynolds numbers. 

After investigating several types of smoke, each of which was noxious, cor- 
rosive, or dirty, we settled upon fog as the flow-visualization medium. The fog 
was made by injecting steam into the airflow and passing the mixture over pans 
of liquid nitrogen in the box B of figure 3. By a judicious choice of the pan area 
and grid geometry inside the box, we could produce a light fog without freezing 
the plenum screens. The temperature of the fog was about 50 OF. Air saturated 
a t  50 O F  is 1.03 times denser than dry room air at  70 O F ,  so the jet column was 
only about 3 yo denser than its surroundings. Figure 5 (plate 3) is a photograph 
of the facility, as outfitted for high-speed motion picture photography. The 
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1 f t  diameter jet plenum is suspended inside a 2 ft diameter chamber containing 
several more pans of liquid nitrogen. They served to refrigerate the skin of the 
plenum, for otherwise the jet would emerge with a warm and fog-free boundary 
layer. Note the crossed lighting and blackened screens, necessary because fog 
scatters light efficiently only in directions more-or-less forward. The arrangement 
for stills was similar except that a single xenon flash lamp provided the illumina- 
tion. The duration of the flash was measured as 20 psec, brief enough for an un- 
blurred image at the highest speeds tested. 

Figure 6 (plates 4-6) comprises seven photographs of the 1 in. fog jet at  exit 
speeds ranging from 20 ft/sec to 147 ft/sec. The corresponding Reynolds num- 
bers advance from 1.05 x lo4 to 7-57 x lo4 in roughly equal increments. Some 
idea of the relation between the schlieren and light-scattering methods of visuali- 
zation can be gained by comparing figures 4 ( b )  and 6( e), both of which were 
taken around Re = 5.2 x 104. The schlieren picture 4 (b)  clearly shows the short 
waves that grow on the vortex sheet immediately downstream of the nozzle, 
but large-scale structure further down is left mainly to the imagination of the 
viewer. The fog picture 6(e) shows two dramatic large puffs 2-5 diameters 
downstream but cannot resolve the fine ripples near the nozzle. The large-scale 
puffs were photographed regularly up to the Reynolds number of 6.52 x 104, 
were infrequent at 7-57 x lo4, and were not observed in such a striking form 
above that. 

Using the lighting arrangement shown in figure 5, we made motion pictures 
of the fog jet at frame rates ranging from 5 x 103 to 1.1 x lo4 per second. After 
a careful study of the motion pictures and of the fog and schlieren stills, we 
came to the tentative conclusion that a jet experiences two kinds of orderly 
process within the range of Reynolds numbers under consideration: an insta- 
bility of the thin laminar boundary layer leaving the lip, and a much larger- 
scale process of puff formation further downstream. The instability scales on 
the thickness of the boundary layer, whereas puff formation involves the whole 
jet column and scales on its diameter. 

The boundary-layer instability has been studied extensively, in particular 
by Sat0 (1960) and Browand (1966), and especially in a definitive sequence of 
papers put forth by Wille (1952) and his colleagues at the Deutsche Versuch- 
sanstalt fur Luft-und Raumfahrt in Berlin. Bibliographies of that work are 
given in a review by Michalke & Wille (1966) and in one of the later papers in the 
sequence by Freymuth (1966), who presents photographs obtained by a method 
suited especially for visualizing short waves downstream of a lip. 

The work of the Berlin school concerns a free boundary layer sufficiently thin 
that the diameter D of the jet has no influence on the instability. In  that limit 
the boundary layer behaves much like the two-dimensional vortex sheet of 
classical inviscid stability theory. The finite thickness of the boundary layer, 
however, distinguishes a wavelength at  which the instability grows at a maxi- 
mum rate. For a hyperbolic-tangent velocity profile having a thickness 6 based 
on maximum slope, Michalke (1964, 1965) showed theoretically that the wave- 
length h for maximum temporal growth is 7.07 6, and that the wavelength for 
maximum spatial growth is 7.80 6. The phase velocity of the preferred temporally 
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growing wave is exactly one-half U,, whereas the phase velocity in the case of 
spatial growth is 0.513 U,. 

We made hot-wire surveys of the laminar boundary layer leaving our jet at  
various Reynolds numbers and found that the profile relaxes quickly into a 
hyperbolic-tangent form. Results for the thickness 6 based on maximum slope 
at a distance 0.02 in. downstream are presented in the table below, together with 
values of the wavelength h measured from the photographs. 

R ~ X  104 &ID (Re)) S/D AID W 
1.05 0.041 4.16 0.44 10.9 
1.95 0.031 4.34 0.24 7.7 
3-09 0.025 4.36 0.19 7.6 
5.14 0.020 4.47 N 0.14 - 7  

TABLE 1. Boundary-layer thicknesses and instability wavelengths in 
dimensionless form 

It is clear from the second column of the table that the boundary layer is thin 
compared with the diameter of the jet, so the work of the Berlin school would 
be expected to apply. The third column shows that 6/D varies approximately as 
(Re)-& in accord with simple viscous boundary-layer concepts. The constant of 
proportionality, N 4.4, of course, depends on the geometry of the nozzle and 
should decrease with decreasing contraction ratio (cf. equation (1) of Becker BE 
Massaro 1968). The fourth column of table 1 shows that h is fairly small compared 
with D except possibly at the lowest Reynolds number studied. Save at that 
Reynolds number the waves are approximately two-dimensional, and the fifth 
column shows that A/& does indeed have values between 7 and 8 in accord with 
the stability theories of Michalke (1964, 1965). Phase velocities measured from 
the motion pictures were about 0.5 U' as well. These data are not nearly so 
accurate as those of Freymuth (1966), who used a loudspeaker to drive the in- 
stability so that phase velocities and growth rates could be measured accurately. 
Table 1 is intended to show that the boundary-layer instability seen in our 
photographs is the two-dimensional phenomenon studied by the Berlin school 
and that the maximally ampliiied mode arises without artificial excitation. 

The short waves quickly steepen and combine pair-by-pair into longer waves, 
the subharmonics measured by Browand (1966) and Freymuth (1966). That ter- 
minates the evolution of orderly structure a t  a Reynolds number of 1.05 x lo4, 
and the subharmonic waves propagate on downstream, gradually losing their 
coherence without much change in overall shape [figure 6(a)]. As the Reynolds 
number advances toward 2 x lo4, a second and rather more violent combination 
follows the fist so that four waves become packed, so to speak, into a puff. 
As the Reynolds number advances still higher, a cascade of pair-by-pair combina- 
tions occurs, initiated by surface waves of decreasing length, and terminated by a 
train of puffs as seen in figure 6. The structure of the train is relatively insensitive 
to Reynolds number, as though the cascade seeks a terminal state defined only 
by U, and D. 
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The puffs are more sporadic than the initial ripples. Three or four puffs form 
and induct themselves downstream, an interval of confused flow ensures, several 
more puffs form, and so on. Formation is not periodic, but average frequencies f 
could be found simply by counting puffs during screenings of the flow-visualiza- 
tion motion pictures. A count depends to a certain extent on what one chooses 
to interpret as a ‘puff ’, but the results have some objectivity as demonstrated by 
the table of timed counts below. 

Rex lo4 Subject SCC Subject SFC st 

1.05 50 48 0.29 
1.95 55 51 0.32 
3.09 60 63 0.28 

TABLE 2. Average Strouhal numbers of puff formation 

Subject SCC was one of us, and subject SFC was an observer without technical 
training, instructed briefly beforehandabout the nature of a ‘puff ’. Theagreement 
between the counts presented in the second and third columns is limited evidence 
that the puffs exist as an objective terminal state of orderly flow. Average 
Strouhal numbers based on the puff counts, St = fD/U,, are shown in the fourth 
column and are seen to have values around 0.3 independent of the Reynolds 
number over the very limited range considered. Accurate counts at higher 
Reynolds numbers could not be obtained, because lighting limitations and the 
high frame rates required to avoid blurring (8 x lo3 per second and above) 
resulted in films of poor quality, lacking some of the visual cues that facilitated 
the counts shown. The still pictures of figure 6 imply that structural similarity 
extends to Reynolds numbers much higher than 3.09 x lo4. 

In  the course of watching the motion pictures, we came to understand why a 
conventional shadowgraph reveals no large-scale structure in jet turbulence. 
Some foggy air is thrown out of the jet column as each puff forms. While the puff 
inducts itself downstream, the ejected fog remains behind as a passive sheath 
around the column. Although dynamically unimportant, the sheath shows up 
clearly in a schliereii picture and would dominate a shadowgraph completely. 
A final observation from the motion pictures: for the Reynolds numbers under 
consideration, the conical potential core of the jet is the interior envelope of the 
waves growing on its surface. 

3. Means of forcing the jet 
The photographs led us to imagine turbulence in the transitional region of a 

jet as a vortex train, a train of loosely packed vortex rings only weakly dependent 
on the circumstances of their origin. The idea is attractive, because a vortex ring 
is a much more stable state of flow than a columnar vortex sheet. The sheet can 
plausibly be expected to wrap into a train of vortex rings carrying the same 
momentum, each ring maintaining its identity some distance downstream from 
its point of origin. One can easily show that a train of vortex rings would distort 
a fog column into spade-shaped puffs of the kind seen in figure 6. 
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The wake of an aircraft is known to follow a similar course (Crow 1970). An 
aircraft generates a pair of trailing vortices, which undergo a symmetric in- 
stability driven by their mutual induction, until they connect at points to form 
a train of vortex rings oriented parallel to the ground. The rings are quasi-stable, 
preserving a degree of order intermediate between the original vortex pair and 
the chaos that finally unfolds. Because of its stability, the vortex ring may be a 
common if not universal mode of transitional flow. 

The visual evidence for order in jet turbulence becomes ambiguous a t  a Rey- 
nolds number around 7 x 104, beyond which we were unable to produce a photo- 
graph better than figure 1. The vortex puffs seen in figure 6, moreover, are fed by 
a laminar instability, and the question remains whether they would exist in 
the absence of a laminar boundary layer. The Strouhal number 0.3 associated 
with puff formation is affirmative evidence, since the peak of the jet-noise spec- 
trum lies between 0-25 and 0.30 depending on angle from the jet axis. The 
coincidence suggests that the vortex train is latent in jet turbulence at high 
Reynolds numbers and contributes to the emission of sound. 

The hypothesis of latent order can be tested in at least two ways. One way 
would be to extract the mode of greatest likelihood from hot-wire signals, along 
the line advocated by Lumley (1966) and commonly used by electrical engineers 
to extract signals from non-white noise. We adopted the alternative, however, 
of forcing the jet periodically and measuring the response. If there were no 
latent order in the unforced case, then the result of forcing would be damped 
waves analogous to those studied by Hussain & Reynolds (1970) in turbulent 
channel flow. If there is a natural tendency toward order, then periodic forcing 
may raise the latent structure above background turbulence and permit measure- 
ments without complicated signal-extraction procedures. 

For the purposes of such experiments, the apparatus was modified in three 
ways: the diameter of the jet was increased to 2in., the boundary layer was trip- 
ped just upstream of the exit, and a loudspeaker was attached to the wooden 
box previously used for mixing fog. Doubling the exit diameter raised the opera- 
tional Reynolds number of the jet to 105, corresponding to an exit speed of about 
100 ft/sec. The blower can drive the 2 in. jet up to 145 ftlsec, but the higher speed 
was reserved for hot-wire calibration. The jet has a top-hat velocity profile and 
a 0.3 yo turbulence level, higher than in the 1 in. jet, because the nozzle contrac- 
tion is halved. In  the absence of a trip, the boundary layer surrounding the 2 in. 
jet column is laminar and has a thickness 6 = 0.022 in. at  an exit speed U, = 100 ft/ 
see. 

We tripped the boundary layer to achieve a measure of Reynolds-number 
independence and ,especially to destroy short interfacial waves immediately 
downstream of the nozzle. The trip ring fits tightly into the 2in. nozzle about 
1 in. upstream from the exit. Deep axial notches cut into the ring forestall any 
organized vortex shedding on its part. The ring is 0.140in. long and 0.020 in. 
thick, about as thick as the laminar boundary layer just upstream of the ring 
when U, = 100ft/sec. At that speed the tripped boundary layer is intensely tur- 
bulent, with a peak root-mean-square axial fluctuation of 0-079 U,, The thickness 
of the turbulence intensity distribution at  half its peak value is 0.062 in., about 
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6 yo of the nozzle radius. The boundary layer becomes untripped a t  an exit speed 
of about 40 ftlsec, much lower than any used in the present experiments. Above 
40ft/sec, the jet is invariant to Reynolds number with respect both to mean and 
to root-mean-square quantities, as far as can be determined from the limited 
range of accessible Reynolds numbers. 

Figure 7 is a plot of the mean axial speed U measured on the centreline a t  
various positions 2 and at four Reynolds numbers Re. The co-ordinates represent 
the dimensionless quantities U/U,andz/D. The circles are data a t  Re = 1.03 x los, 
and data at  other Reynolds numbers are plotted wherever they do not overlap 
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FIGURE 7. Profile of the mean axial speed on the centreline at  several Reynolds numbers, 
aa denoted by the following data symbols: A, 6 . 2 ~  lo4; 0, 8 . 3 ~  lo4; 0, 1 . 0 3 ~  106; 
and 0,1*24 x 106. 

the circles. The mean axial profiles are practically indistinguishable in the 
Reynolds-number interval 6.2 x lo4 to 1-24 x los. Figure 8 is a similar plot of the 
turbulence intensity u, the root-mean-square axial component of turbulent 
velocity as measured on the centreline. A factor-of-two change in Reynolds 
number is seen to have little effect on the ratio u/U,. The curves in figures 7 and 8 
aresuperposedonlater plots to represent the unforced state. Hopefully the tripped 
boundary layer resembles conditions at the exit of a turbo-jet engine, but certainly 
the boundary layer is fully turbulent and sustains no orderly oscillations of its 
own. Any large-scale structure that can be evoked has nothing to do with details 
of the boundary layer shed from the nozzle. 

The loudspeaker L sketched in figure 3 provided the forcing. The 12in. dia- 
meter loudspeaker was installed upstream of the plenum to keep the exit con- 
ditions clean. As a result, the transmission of energy between the loudspeaker 
and the exit plane is efficient only a t  certain discrete forcing frequencies, which 
are the organ-pipe resonances of the cavity. As far as internal acoustic waves are 
concerned, the highly contracted nozzle presents a closed face and is therefore 
a pressure maximum at resonance. The oscillating pressure upstream of the con- 
traction results in an oscillating speed at  the exit, since the jet must attain the 
constant ambient pressure downstream of the contraction. Figure 9 is a spectrum 
of the jet cavity, measured a t  an exit speed U, = 60 ft/sec, witha root-mean-square 
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potential W = 10.5 V across the terminals of the loudspeaker. The abscissa is 
frequency f, and the ordinate is ue/Ue, where u, is the root-mean-square sinusoidal 
speed fluctuation at the jet exit, as measured by a hot-wire anemometer. The 
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FIGURE 8. ProGle of the root-mean-square axial fluctuation on the centreline. 
The data symbols are defined in the caption of figure 7. 
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spectrum has resonance peaks at f = 113Hz, 185Hz, 262Hz, and so on. The 
resonance frequencies are independent of U,, but the surging amplitude ue/Ue at 
a particular resonance is proportional to W/Ui,  a result that can be deduced by 
assuming the fluctuating pressure upstream of the contraction to be proportional 
to W and applying Bernoulli’s equation to the contraction process itself. 

We wanted to find how the jet responds to periodic surging at Strouhal num- 
bers ranging from 0-15 to 0.60, from half to twice the Strouhal number of 0.3 
derived from puff counts. Among the quantities in the definition St = fD/U,, 
D was fixed at  2 in., f could take on discrete values, and U, could be varied con- 
tinuously. Varying U,, however, would result in simultaneous changes of the 
Reynolds number Re = U,D/v. Although the boundary-layer trip makes the 
flow insensitive to Reynolds number, we chose to hold Re near lo5 by skipping 
from one resonance to the next according to the following schedule: 

st 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0-45 
0.50 
0.55 
0.60 

f ( W  
113 
113 
113 
185 
185 
262 
262 
262 
262 
337 

U,(ft/sec) 
126 
94 
75 

103 
88 

110 
97 
87 
79 
94 

R ~ X  104 

13 
9.69 
7.75 

10.6 
9.07 

11.27 
9-98 
8.98 
8.17 
9.64 

TABLE 3. Forcing frequencies, exit speeds, and Reynolds numbers 
of the hot-wire experiments 

Each of the experiments described in subsequent sections was performed at the 
conditions specified in a row of table 3. The Reynolds-number variations are 
unimportant, and the periodic surging can be described in terms of a Strouhal 
number St and dimensionless root-mean-square amplitude u,/Ue. Notice that the 
frequencies in table 3 correspond to sound waves 3-loft long inside the cavity. 
The jet turbulence outside does not interact directly with such waves and re- 
mains incompressible. The effect of the internal waves is to impose a periodic 
fluctuation on the strength of the vortex layer leaving the nozzle. 

We measured several kinds of response downstream, each based on the axial 
component of velocity: the mean speed U ;  the root-mean-square axial fluctua- 
tion u ; root-mean-square fluctuations uO3,,, uo60, filtered aroundStrouhalnumbers 
denoted by the subscripts; the spectrum F(f) of the axial fluctuation; the length 
h and phase velocity c of organized waves. Most measurements were made on the 
centreline of the jet. In  more general cases the cylindrical co-ordinates (x, r )  of the 
hot wire are given, r = 0 being the centreline of the jet and x = 0 the exit plane. 

Signals were obtained by means of a linearized, constant -temperature Disa 
anemometer. The mean speed U resulted from analogue integration over an 
interval typically 100 sec. The root-mean-square fluctuation u was measured with 
a Disa r.m.5. voltmeter, having a response flat to within 1 yo of full scale for all 
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frequencies between 1 and 105Hz. The core of the experiments is to relate the 
dimensionless turbulence intensity u/Ue to the axial location x/D and to the input 
variables u,/Ue and St .  The jet is to be regarded as a ‘black box’, a non-linear 
oscillator whose properties are to be understood in terms of the inputs ue/Ue, St 
and response u/Ue. 

Now that the relevant parameters have been defined, it is worth noting 
exactly how this study fits with previous work involving loudspeaker excitation 
of jets. We deal with Reynolds numbers Re z lo5, about ten times higher than 
those explored by Becker & Massaro (1968). We deal with Strouhal numbers 
St x 0.30, about ten times lower than those explored by Freymuth (1966), who 
confined his study to high-frequency waves, much shorter than the diameter 
D of the jet. Freymuth defined his Strouhal number in terms of boundary-layer 
thickness, but the lowest value of fD/Ue he reached was about 0.9 (f8/Ue =: 0.002, 
figure 16, Freymuth 1966). A fundamentally new phenomenon arises as St  
descends below about 0-45: the forced wave becomes highly dispersive and attains 
an amplitude large enough to disintegrate the jet column. 

4. Structure of the preferred mode 
We begin by explaining the consequences of forcing at  St = 0.30, which table 

2 suggests as the Strouhal number of natural oscillation. Except for a large 
accessible amplitude, the mode driven a t  S t  = 0.30 is typical and serves as a 
useful introduction to the quantitative work. 

The vortex puffs appear in the motion pictures to grow abruptly about four 
diameters downstream, just ahead of the tip of the potential core. On that basis, 
a strong response u/Ue would be expected a t  a point x / D  = 4, under a surging 
imposed at  St  = 0.30. Figure 10 is an amplitude-response function measured 
under those conditions on the centreline of the jet. The abscissa is the forcing 
amplitude ue/Ue measured at  x / D  = 0 and, incidentally, found to be uniform over 
the exit plane. The ordinate is the response u/U,  measured by moving the hot wire 
back along the jet axis to x/D = 4. The value u/Ue = 0-038 at ue/Ue = 0 is the 
natural turbulence intensity near the tip of the potential core. The amplitude 
response is shaped like many response functions occurring in engineering, for 
example, the stress-strain diagram for a ductile metal: the curve rises almost 
linearly with small forcing amplitudes, then yields, or saturates, under some non- 
linear effect (of course the figure represents time-averaged rather than instan- 
taneous relationships). Under a, forcing amplitude of lyo, that is ue/Ue = 0.01, 
the response u/Ue is 13.9 yo, only a small part of which is aperiodic background 
turbulence (cf. figure 12). Under a forcing amplitude ue/V, = 2 yo, the response 
u/Ue has risen to 17-2 yo, and it cannot be driven past 19 yo under any reasonable 
level of forcing. 

One might have thought the wave-form a t  x/D = 4 simply falls apart under 
forcing amplitudes above 1-2 yo, but quite a different process underlies satura- 
tion. Figure 11 shows four oscilloscope photographs of the wave-forms upon 
which figure 10 is based. The forcing amplitudes ue/Ue are 0.005, 0.01, 0.02, and 
0.04, doubling from one photograph to the next. The amplitude and time 
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scales are arbitrary but the same in all pictures; the axial component of velocity 
increases toward the vertical, and time increases from left to right. The signal 
a t  a forcing amplitude of 0-5 yo is a sine wave, distorted a t  random by ambient 
turbulence. As uJU, advances to 1 yo, the signal becomes cleaner and almost 
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FIGURE 10. Amplitude response at the preferred Strouhal number 0.30. The response 
u/V, is measured on the centreline four diameters downstream of the jet exit. 

( b )  (4 
FIQURE 11. Wave-forms of the preferred mode, measured on the centreline four diameters 
downstream of the exit. The Strouhal number is 0.30 and the forcing amplitudes u,/U, 
are (a) 0.5 %, ( b )  1 %, ( c )  2 %, and ( d )  4 %. 
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doubles in amplitude, but still resembles a sine wave. The amplitude has increased 
only slightly a t  uelUe = 2 yo, but now the wave-form has steepened along its rising 
front; a significant harmonic has arisen from the fundamental being forced. Since 
the Strouhal number of forcing is 0.30, the Strouhal number of the harmonic 
must be 0-60. Little change takes place as ueIUe increases from 2 to 4 %, though 
some fine-scale turbulence begins to appear during the relaxing part of the wave 
cycle. The wave does not become disordered at forcing amplitudes above 1 %, 
but instead saturates under the action of its harmonic. 
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FIQURE 12. Filtered response functions of the preferred mode. The experimental con- 
ditions are the same as for figure 10, from which the curve without data points is taken, 
representing the total intensity ulU,. The square data symbols denote the fundamental 
response U,,.~~/U~, and the triangular symbols denote the harmonic response uoso/Ue. 

Those remarks are given quantitative form in figure 12, which is a plot of 
Jiltered amplitude-response data. The curve without data points is the total 
amplitude response ulUe taken from figure 10, the curve defined by the square 
data symbols is the fundamental response uo30/Ue obtained by filtering the hot- 
wire output around the forcing frequency 185 Hz, and the curve with triangular 
symbols is the harmonic response uoGo/Ue obtained by filtering around 370Hz. 
The filter was a Dytronics Model 720, with a band-pass width about 7 % of the 
centre frequency. The fundamental is accurately linear up to a forcing amplitude 
uelU, = 0.5 yo, then curves over as ue/U, increases from 0.5 % to about 1.5 yo. 
The harmonic builds up in the same interval, and the two come into equilibrium 
around ue/Ue = 2 Yo. The fundamental saturates a t  a value u03,,IUe = 17.9 yo, 
and the harmonic a t  u,,.60/Ue = 3.5 %. 

All the data presented so far were obtained on the centreline at  x/D = 4, which 
was deemed likely to be the point of maximum response on the basis of the flow- 
visualizatlion experiments. The conjecture can be verified by fixing uelUe and 

36-2 
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varying the hot-wire location x/D. Figure 13 is an axial profile of the fluctuation 
intensity u/Ue measured along the centreline under the forcing conditions 
uelUe = 2 yo and St = 0.30. The intensity profde for the unforced case is super- 
posed from figure 8 without data points. The slight but well-chosen surging a t  

0 4 8 12 16 

X I D  
FIGURE 13. Axial profile of the turbulence intensity, measured along the centreline under 
2 yo forcing at a Strouhal number of 0.30. The curve without data points represents the 
unforced case and is taken from figure 8. 

the exit plane is seen to drive a powerful wave, which indeed reaches a peak 
amplitude near x/D = 4, more precisely, a t  x /D = 3.7. The intensity profile 
decreases from x /D = 4 to 6 and there merges with the profile that exists in the 
absence of forcing. The natural turbulence intensity profile reaches a peak at  
x /D = 9.5 on the centreline, and forcing under the conditions ue/Q = 2 yo, 
St = 0-30 draws that peak inward to x /D = 8.5. 

Axial profiles of the root-mean-square filtered fundamental uo30/Q and 
harmonic uoGo/Ue are presented in figure 14 for the same forcing conditions. The 
fundamental and harmonic rise and fall together with no apparent tendency for 
the spatial growth of the harmonic to lag the growth of the fundamental. Together 
they dominate the first six diameters of the jet and then fall toward zero. The 
experimental points do not quite reach zero, because the finite filter window 
admits some background turbulence not being driven by the periodic surging, 
especially in the intensely turbulent region around x/D = 8. The total intensity 
u/Ue is reproduced without data points in figure 14 as a solid line. The dashed 
line is the residual obtained by subtraction of squares : 
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The intention was to include only the periodic parts of the filtered terms, so the 
fundamental and harmonic curves in figure 14 were extrapolated sensibly to 
zero near x / D  = 8 before the subtraction. 

If the remaining harmonics of the forced wave are small, as seems likely, then 
uJUe can be regarded as the intensity of background turbulence not under the 
control of the surging at  the exit plane. The level of uncontrolled fluctuations on 

5 
x/D 

FIGURE 14. Filtered axial profiles of the preferred mode. The solid curve without data 
points represents the total intensity u/Ue and is taken from figure 13. The square data 
symbols denote the contribution uo.30/U6 of the fundamental, and the triangular symbols 
denote the contribution uo.eo/Ue of the harmonic. The dashed curve represents the intensity 
of turbulence not bound in the fundamental or harmonic. 

the centreline is essentially zero from x / D  = 0 to 3 and reaches the level of the 
controlled structure only at x / D  = 6 under the forcing conditions ue/Ue = 2 %, 
Xt = 0.30. The energy in the curious ramp-like portion of the natural intensity 
profile, seen in figure 8 between x / D  = 0 and 5, is bound into the strictly periodic 
flow. Presumably that ramp is the potential-core signature of big eddies in the 
mixing layer, in which case one can say that big eddies within the first five dia- 
meters of the jet can be controlled by a slight surging applied in the exit plane at a 
Strouhal number of 0.30. Moreover, no control i s  possible beyond eight diameters. 
By control, we mean that the surging fixes the frequency and phase of big-eddy 
formation. 

The forced wave naturally has an effect on the mean flow. A complete discus- 
sion is deferred to $8, but an idea of the effect can be gained from figure 15, which 
is a profile of the dimensionless mean speed U/Ue measured on the centreline 
under the conditions ue/Ue = 2 yo, Xt = 0.30. The line without data points 
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denotes the unforced case, this time taken from figure 7. Forcing draws the 
asymptotic decay curve beyond x / D  = 8 in toward the origin about two 
diameters. The reason for the shift in virtual origin is that forcing increases the 
entrainment between x /D = 0 and 8, so the jet passes out of the controlled region 
with a volume flux appropriate to an unforced jet leaving an exit two diameters 
upstream from the actual exit. 
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FIGURE 15. Effect of the preferred mode on the decay of mean speed along the centreline. 
The forcing level is 2 yo, and the Strouhal number is 0.30. The profile without data points 
represents the unforced case and is based on figure 7. 

5. Amplitude response at various Strouhal numbers 
In what sense is the mode studied in the foregoing section preferred? We 

first considered the question during the flow-visualization experiments, when it 
became apparent that puffs tend to form a t  an average Strouhal number of 0.3. 
An obvious possibility is that St = 0.30 characterizes a maximally amplified mode 
of linear instability, but the possibility does not survive analysis. Batchelor & 
Gill (1962) have treated the temporal instability of doubly infinite jet columns. 
For a top-hat velooity profile, they found that axisymmetric waves become 
progressively more unstable as the Strouhal number increases. Nothing seems to 
distinguish the mode a t  X t  = 0.30. If the column is presumed to have a boundary 
layer of finite thickness, then a two-dimensional mechanism (Michalke 1964, 
1965) takes over and establishes a preference as the wavelength becomes com- 
parable to the boundary-layer thickness. The fastest growing short waves are 
pitched much higher than St = 0.30, however, and in any case the boundary- 
layer trip has eliminated them from the present experiments. 

We thought about other linear mechanisms outside the theory of Batchelor 
& Gill. Their theory was revised for spatially growing waves, purely oscillatory 
in time, but the amplification rate again was found to grow monotonically with 
Strouhal number (cf. $9). Spatial instability of a vortex sheet leaving a semi- 
infinite plate was studied (Orszag & Crow 1970), in the hope that an instability 
downstream of a jet might interact with the nozzle to produce a large local surging 
when St = 0.30. The interaction between a two-dimensional vortex sheet and an 
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adjoining boundary was found to be disappointingly weak, however, and the 
interaction between a jet column and nozzle is probably even weaker. Every 
appeal to linear dynamics failed to establish a preference for the Strouhal 
number of 0.30. The reason is that non-linearity establishes the preference. 

Figure 16 is a plot of amplitude-response functions measured on the centre- 
line at  x/D = 4. The total response u/U, is plotted against the root-mean-square 
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FIQURE 16. Amplitude-response functions measured on the centreline four diameters 
downstream of the jet exit. The response functions are labelled with Strouhal numbers, 
which range from 0-16 to 0.30. 

surging u,/& in the exit plane at four Strouhal numbers: St= 0*15,0.20,0.25, and 
0.30, the accessory experimental conditions being listed in table 3. As the 
Strouhal number rises from 0.15 to 0.30, the response at  each level of forcing 
rises progressively. Within the range of small ue/Ue where the fundamental (not 
shown) depends linearly on forcing, the slope du/du,rises monotonically in accord 
with stability theory. The amplitude uf V, at which non-linear saturation begins 
to  set in rises as well. 

Figure 17 illustrates the consequences of forcing at  higher Strouhal numbers. 
The amplitude response a t  St = 0.30 appears once again, together with response 
functions at  St = 0.35, 0.40, 0.45, and 0.50, each measured on the centreline at  
x/D = 4. The slope du/du, continues to rise monotonically with Strouhal number 
in the linear region near ue/Ue = 0, but non-linearity imposes an increasingly 
powerful restraint on the maximum attainable response. The saturation limit of 
ulU, decreases continuously as the Strouhal number increases from 0.30 to 0.50. 
The mode having a Strouhal number of 0-30 is preferred in the seme that it can 
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attain the highest possible amplitude under the combined effects of linear amplijka- 
tion and non-linear saturation. 

We measured response functions a t  St = 0.55 and 0.60, but they fall too near 
the St = 0.50 curve to be plotted in figure 17. The maximum attainable response 
becomes very nearly constant at u/U, = 10 % for the highest Strouhal numbers 
we investigated. That result accords with an observation of Freymuth (1966), 
that waves on a free laminar boundary layer tend to saturate at  a constant ampli- 
tude a t  the lowest Strouhal numbers he investigated, which were mostly greater 
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FIGURE 17. Amplitude-response functions continued through the Strouhal-number 

interval 0.30 to 0.50. 

than 3.0 based on jet diameter, and never below 0.9. It therefore seems likely that 
u/Ue = 10 % persists as the upper limit of response at  x/D = 4 for Strouhal num- 
bers ranging from 0.5 u p  to values so high that the thickness of the laminar 
boundary layer, if any, becomes involved. 

The curves in figures 16 and 17 can be regarded as cuts through an amplitude- 
response su@zce above the plane of forcing parameters (St ,  uelUe). Figure 18 is a 
contour map of the response surface, constructed from the original response 
curves and their cross-plots against St. The abscissa of figure 18 is the Stroiihal 
number St, the ordinate is the forcing amplitude ue/Ue, and the contours are levels 
of constant response u/Ue measured on the centreline at x/D = 4. The higher con- 
tours point like daggers to the Strouhal number 0.30. Looking along a cut at  a 
constant and very small ue/Ue, one would find no Strouhal-number preference. 
Linear stability theory applies only along such cuts, so its failure to explain the 
Strouhal-number preference was inevitable. One must look along a horizontal 
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cut at  higher ue/Ue, say ue\Ue = 1 yo, to find a mode of maximum amplitude. Note 
that the Strouhal number of the mode preferred along a horizontal cut decreases 
somewhat with increasing uelUe. At a forcing amplitude uJUe = 0.5 %, the re- 
sponse attains a maximum at St = 0.37. When ue.Ue = 1 %, the maximum occurs 
a t  S t  = 0-34, and the maximum occurs at  S t  = 0.30 exactly, when uel& = 2 %. 
Thereafter the variation of preferred S t  with increasing ue/Ueis slow. The assertion 
that 0-30 is the preferred Strouhal number must be qualified slightly, because it 
involves the tacit assumption that the forcing amplitude ue/& is 2 yo or more. 
The precise Strouhal-number preference for any given level of forcing can be 
deduced from figure 18. 
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FIGURE 18. Contour map of the total response four diameters downstream on the centre- 
line, as a function of Strouhal number and amplitude of forcing. The contours are labelled 
with u/U,, which rises by 0.02 from one curve to the next. The abscissa is the contour 
u/U, = 0.04 approximately, the turbulence intensity in the absence of forcing. 

Imagine a round jet in a turbulent state having n o  orderly structure of the 
kind under study. The turbulence excites waves on the jet column just as our 
exit-plane surging does, except that the turbulent forcing is not confined to one 
frequency. The turbulence hunts over the ( S t ,  ue/&) plane, so to speak, triggering 
wave-trains a t  random. Those triggered at  a Strouhal number of 0.30 reach an 
especially high amplitude, sporadically overthrowing the chaos assumed as the 
initial state of turbulence. The structure of big eddies can be expected to pull in 
around the mode at  S t  = 0.30, which attains the highest possible amplitude 
under non-linear saturation. 
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6. Axial profiles at various Strouhal numbers 
We showed in the foregoing section that the Strouhal number of maximum 

response at  x/D = 4 varies somewhat with u,/Ue, having no finite value at  ue/Ue = 0 
and acquiring values around 0.30 for ue/Ue 3 2%. As might be expected, the 
preferred Strouhal number also depends to some extent on x/D.  The waves all 
amplify with distance downstream, so a high x / D  corresponds in a loose way to a 
high ue/&. Here we examine the correspondence by presenting axial profiles of 
the total response u/U, for the same Strouhal numbers as in $5, but for a forcing 
amplitude uelUe fixed a t  2 yo. 
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FIGURE 19. Centreline profiles of turbulence intensity, under 2 yo forcing in the Strouhal- 
number interval 0.15 to 0.30. The Strouhal numbers are given on the plot. 

Figure 19 shows centreline profiles of response to 2 yo forcing a t  the Strouhal 
numbers 0.15,0.20,0.25, and 0.30 (cf. figure 16). The curve pertaining t o  St = 0.30 
has already appeared in figure 13, which shows how the data points were generally 
spaced. The effect of forcing a t  St = 0-15 is very slight, and the axial intensity 
profile nearly coincides with the unforced case in figure 8. As St rises from 0.15 
to 0.30, the ramp-like part of the intensity profile bulges upward in the interval 
x / D  = 0 to 5. When St = 0.30, the amplitude of the forced wave attains a sharp 
maximum around x / D  = 4 and then decays downstream into the secondary 
maximum due to natural turbulence. 

Figure 20 shows the primary peak collapsing as the Strouhal number advances 
through the values 0.35, 0.40, 0.45, and 0.50 (cf. figure 17). At small distances 
x/D,  the spatial growth rate d(u/U,)/d(x/D) increases monotonically with Strou- 
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ha1 number throughout the range 0.15 to 0.50, as one would expect from linear 
stability theory. The peak response u/U, is realized on the Xt = 0.30 profile, near 
x/D = 4. The location x/D = 4 was therefore the correct choice for defining the 
Strouhal-number preference in $5, because the mode of maximum response at 
x / D  = 4 is also the mode of maximum response over all values of the parameters 
S t  and x/D. 
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FIGURE 20. Centreline profiles continued through the Strouhal-number interval 
0.35 to 0.50. 

By analogy with $ 5 ,  the curves in figures 19 and 20 can be regarded as cuts 
through a response surface above the (St, x /D)  plane. A contour map of the surface 
is presented in figure 21, which is analogous to figure 18. The contours are again 
levels of constant response u/&, and the abscissa is still the Strouhal number Xt. 
The ordinate this time is x/D,  the forcing amplitude uJU, being fixed at 2 yo. The 
peak within the perimeter u/Ue = 16 yo defines the Strouhal number of the mode 
preferred under 2 %  forcing and the location at  which it attains maximum 
amplitude. Note that a clear Strouhal-number preference cannot be discerned 
by looking along a horizontal cut at  small x/D. All waves are linear sufficiently 
close to the nozzle even when driven by a 2 yo surging, and the higher the Strouhal 
number in the linear regime, the greater the rate of spatial amplification. 

Axial profiles at  Xt = 0.60 were also measured and deserve special comment. 
Figure 22 is a plot of the root-mean-square centreline response u/U, measured 
under the conditions ue/Ue = 2 yo and S t  = 0.60, twice the Strouhal number of 
the preferred mode. The curve without data points is the intensity profile for 
the unforced case, taken from figure 8. The response profile at S t  = 0.60 has two 
curious attributes: an abrupt change of slope a t  x/D = 4, and a shift of the 



572 X. C. Crow and P. H .  Champagne 

background-turbulence profile a full three diameters upstream toward the nozzle. 
The corresponding profile of mean centreline speed U/U, is plotted in figure 23, 
which confirms the powerful effect of forcing a t  St = 0.60. The potential core has 
shortened by two diameters, and the asymptotic decay profile has drawn inward 
three diameters. The mean-speed profile may be compared with figure 15, which 
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FIGURE 21. Contours of centreline turbulence intensity as a function of Strouhal number 
of forcing and distance downstream. The forcing amplitude is fixed at 2 yo. The contours 
are labelled with u/Ue, which changes by 0.02 from one curve to  the next. 

shows the more moderate changes produced by driving the preferred mode 
directly. The virtual origin of the decay profile shifts only two diameters upstream 
a8 explained in $4. 

Judged solely on the basis of figures 22 and 23, the consequences of driving the 
jet a t  a Strouhal number of 0.60 seem paradoxical: the mode saturates a t  a 
relatively modest amplitude, say u/U, = 7.5 yo, yet deforms the jet more power- 
fully than the preferred mode having more than twice the saturation amplitude. 
The resolution of the paradox was apparent from oscilloscope traces of the hot- 
wire signal: the Xt = 0-60 mode survives only up to x/D = 4, a t  which point a 
violent Xt = 0.30 subharmonic arises, presumably by the process of engulfment 
seen in figure 6(a) .  The changes in the jet are not wrought by the St = 0.60 
mode directly, but instead by its subharmonic at  the preferred Strouhal number 
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of 0.30. The St = 0.60 fundamental merely serves as an amplifier between the 
2 yo surging in the exit plane and the 7.5 % surging downstream at the point of 
subharmonic formation. 

FIGURE 22. Centreline profile of turbulence intensity under 2% forcing at a Strouhal 
number of 0.60. The curve without data points represents the unforced case and is taken 
from figure 8. 
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FIGURE 23. Mean-speed decay along the centreline under 2 yo forcing a t  a Strouhal number 

of 0.60. The curve without data points is the unforced profile taken from figure 7. 

7. Summary description of the modes 
In  the two previous sections we studied the response u/&, first by setting 

x/D = 4 and allowing ue/Ue and S t  to vary, and then by setting uJV, = 2 yo and 
allowing x / D  and St to vary. Here we bring the response study to its logical 
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completion by setting St = 0.30 and varying ue/& and x/D. The reason for doing 
so is that the other procedures have left open questions about the eventual decay 
of orderly structure. Why do the intensities in figures 19 and 20 decay beyond the 
primary peaks ? What effect does the damping have on the choice of a preferred 
mode Z The nature of the problem can best be judged from figure 14, which shows 
the evolution of fundamental and harmonic amplitudes under the forcing 
conditions St = 0.30, uJU, = 2 %. The growth of the fundamental is caused by 
linear instability, and the peak amplitude is determined mainly by non-linear 
saturation. The nature of the decay from x / D  = 4 to 8 remains to be studied, 
together with its effect on the precise location and amplitude of the peak. 

Figure 14 conveys the impression that the fundamental uo.30/Ue would peak at  
Some x / D  and thereafter decay, even if the mode were forced so slightly that non- 
linear saturation never took hold. At least two linear decay mechanisms are 
available. One possibility is that fine-scale background turbulence acts as an 
eddy viscosity and grinds the wave down. A second and less conjectural possi- 
bility is that the wave, as it propagates downstream, encounters mean velocity 
profiles which are progressively more stable with respect to axisymmetric dis- 
turbances. All axisymmetric modes amplify on a top-hat velocity profile, but all 
decay on a bell-shaped profile of the kind a turbulent jet assumes downstream of 
the potential core (Batchelor & Gill 1962). An axisymmetric mode could be ex- 
pected to grow around the potential core, then lose its grip on the mean field in 
the transition region and die away. A similar mechanism terminates the growth 
of waves on a spreading two-dimensional laminar wake (KO, Kubota & Lees 
1970). 

Figure 24 shows centreline profiles of the fundamental uo.30/& driven at  a 
Strouhal number of 0.30. The lowest curve represents the case ue/Ue = 0 and is 
included to show the root-mean-square background fluctuations admitted 
through the finite filter window. The remaining profiles are associated with the 
forcing amplitude ueIUe = 0.25 %, 0-5, 1, 2, and 4 %, doubling from one value to 
the next. The profile for uelUe = 2 yo is based on the same data as figure 14. The 
profiles here are plotted in semi-logarithmic co-ordinates to distinguish linear 
and non-linear mechanisms. If the jet were a linear system, then the axial 
response profiles would have the same shape regardless of forcing amplitude, 
which would merely locate each profile along the logarithmic ordinate u/U,. 
Indeed the axial intensity profiles for the two lowest forcing levels, ue/Ue = 0.25 
and 0.5y0, differ only by a constant vertical displacement out to the region 
x /D  = 6 or 7 where background turbulence takes over. Those profiles show how 
a forced wave behaves in the absence of non-linear saturation: the wave grows 
more-or-less exponentially with distance downstream, grows less rapidly near 
the tip of the potential core, reaches a peak proportional to forcing amplitude at  
x /D  = 5.5, and thereafter decays under the action of a changing mean field or 
eddy damping. The total amplification u/ue a t  x /D  = 5.5 is about 18. 

At higher levels of forcing, the jet behaves as a linear system only within the 
f is t  diameter or two of the exit. The peak of the ue/Ue = 1 yo profile is only 47 % 
higher than the peak of the ue/Ue = 0.5 yo profile. The fractional increase of the 
peak intensity drops to 27 % as ueIUe doubles from 1 to 2 yo, and to 14 yo under 
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the final doubling. The main effect of increasing the root-mean-square surging 
beyond 1 yo is to draw the point at which the wave saturates inward toward the 
nozzle. A t  a forcing amplitude of 0.25 %, the fundamental amplitude uoso/G 
peaks a t  x/D = 5.5, which is therefore the point where the linear mechanisms of 
growth and decay just balance. At a forcing level of 1 %, the peak occurs at  
x/D = 4.2, and it drops to x/D = 3.4 when the forcing level reaches 4 %. Notice 
how the curves associated with the two highest levels of forcing, ue/Ue = 2 and 4 %, 
knit together into a common decay profile after saturating. 

FIGURE 24. Centreline intensity profiles of the fundamental wave driven at a Strouhal 
number of 0.30. The data symbols denote the following forcing amplitudes u&,: v, nc 
forcing; 0, 0.25% forcing; 0, 0 4 % ;  0, 1 %; 0, 2%; A,  4%. The ordinate u,.,lU, ir 
logarithmic, so the forced profiles would have had the same shape had the jet been linear. 

Figure 25 is a semi-logarithmic plot of the harmonic uoBo/& under the six 
forcing conditions of figure 24; the lowest curve is the filter-window background, 
and the other five are harmonic profiles under forcing amplitudes ue/Q that 
double sequentially from 0.25 to 4 yo. Again the data for ue/Ue = 2 % are taken 
from figure 14. The harmonic profiles have the character one would expect 
from the associated fundamentals. Forcing at  uJUe = 0.5 % or below evokes only 
a slight harmonic response, which is why the fundamental is free of non-linear 
saturation in that range. As the forcing level increases beyond 1 yo, a stronger and 
stronger harmonic arises to inhibit the growth of the fundamental. Raising the 
forcing amplitude from 2 to 4 yo brings the harmonic forth at a smaller x/D but 
does not greatly enhance its amplitude. 

Figures 24 and 25 pertain to the St = 0.30 mode, but the qualitative under- 
standing we have drawn from them is gemral: a forced axisymmetric wave 
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amplifies owing to the linear instability of a top-hat jet column, saturates under 
the non-linear action of a harmonic, and finally decays owing to an essentially 
linear process, either mean-field changes or eddy damping. 

Having reached an understanding from the hot-wire data, we returned to 
flow-visualization experiments for confirmation. The changes made since the 
photographs of $ 2  were taken should be recalled: figures 4 and 6 show a 1 in. 

x /D 

FIGURE 25. Centreline profiles of the harmonics associated with the fundamentals of figure 
24. The Strouhal number of forcing is 0.30, and the data symbols denote the same forcing 
amplitudes as in the previous figure. The ordinate u,,,,/Ue is again logarithmic. 

jet with a laminar boundary layer and without artificial surging, whereas the 
forced jet has a diameter of 2 in. and a fully turbulent boundary layer. Because 
the volume flow quadrupled in the transition from a 1 in. to a 2in. jet, we could 
not retain fog as a means of visualization. Boundary-layer turbulence and higher 
Reynolds numbers put the schlieren method to even greater disadvantage than 
before, but schlieren photography was the only option. Happily the effects of 
forcing are spectacular enough to show through fine boundary-layer turbulence. 

Three of the schlieren photographs are presented in figure 26 (plate 7) .  They 
were taken much the same way as those of figure 4, except that Type 52 Polaroid 
film of moderate contrast was used to suppress irrelevant detail. Photography 
under forced conditions required special care, because the introduction of CO, 
causes the resonance frequencies of the plenum to  shift slightly. If the loud- 
speaker were tuned in the absence of CO,, then uJU, would fall off the resonance 
peak when CO, was introduced. The problem was easily circumvented by tuning 
the system while maintaining a flow of CO, appropriate for photography. The 
185 Hz resonance of table 3, for example, shifted to 181-4Hz, which was used as 
the frequency for driving the St = 0.30 mode. The shaft entering from the right 
in figures 2 6 ( 6 )  and (c) is the hot-wire probe, located at x/D = 4 and left in the 
flow to monitor the tuning. 

Figure 26(a)  shows the 2in. C0,-seeded jet without forcing. The usual hints 
of orderly structure appear, with the usual ambiguity (cf. figure 1). Figures 
26(a)  and (b )  were taken at  the same Reynolds number, Re = 1.06 x lo5, but the 
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flow seen in 26(b)  was forced under the conditions Xt = 0.30, ue/Ue = 2 yo. 
Figure 26(c)  was taken under the forcing conditions Xt = 0.60, u,/Ue = 2 yo. 
Figures 26(b)  and ( c )  illustrate the kinematics of forced waves in a striking man- 
ner. The Xt = 0.60 mode grows quickly near the nozzle but saturates 1-2 dia- 
meters downstream, in accord with the measured intensity profile of figure 22. 
A train of three saturated waves propagates toward x / D  = 4 and there suffers a 
violent transformation, leading to the enormous spreading angle evident in 
figure 26 (c ) .  The St = 0.60 mode contorts the surface of the jet column into steep 
waves but cannot penetrate deep enough to disintegrate the column as a whole. 
The X t  = 0.30 mode shown in figure 26 (b )  grows more gradually downstream of 
the nozzle but eventually causes contortions as steep as those of the Xt = 0.60 
mode. Because of its greater wavelength, the Xt = 0.30 mode penetrates deep 
into the jet column and causes its virtual disintegration. 

8. Influence of forcing on entrainment and background turbulence 
We have concentrated so far on the structure of the forced waves themselves, 

and now we turn to their effect on the mean flow and on background turbulence. 
The work presented in this section concerns the X t  = 0.30 mode alone. It would 
have been interesting to carry the study of the St = 0-60 mode beyond the centre- 
line profiles of figures 22 and 23, but time fell short. 

Figures 27 and 28 display the results of radial hot-wire traverses at  five stations 
along the jet, namely x /D  = 0.025, 2,  4, 6 ,  and 8. Part (a) of each figure shows 
radial profiles in the absence of forcing, and part (b )  the corresponding profiles 
under the forcing conditions u,/Ue = 2 %, X t  = 0.30. Figure 27 shows U(x,  r)/Ue, 
the axial component of mean velocity, and figure 28 shows u ( x ,  r ) / q ,  the root- 
mean-square axial component of turbulent velocity. The ordinate in each case is 
r/R, R being the 1 in. radius of the jet. The profiles are staggered along the abscis- 
sas to suggest the spatial structure of the jet and global effects of forcing. Note 
that the axial spacing is compressed by a factor of four relative to the radial. 

According to figure 27, forcing makes no dramatic change in the mean field. 
The mean profile spreads somewhat faster under forcing, so entrainment is 
enhanced, but the consequences of forcing appear much more clearly in the radial 
intensity profiles of figure 28. Forcing is seen to inflate the turbulence level out to 
x / D  = 6, especially on the outskirts of the jet and inside the potential core, which 
can be taken as the cone generated by a straight line running from x / D  = 0, 
r/R = 1 down to x / D  = 6 ,  r /R = 0.  The turbulence level in the mixing layer 
around r/R = 1 is not so strongly affected. 

The most interesting property of the mean flow is its volume flux, whose deri- 
vative with respect to axial location is entrainment. The volume flux &(x) is 
defined by an area integral over the axial component of mean velocity: 

~ ( x )  = Irn q ( x , r )  2nrdr. 

The subscript i directs attention to the fact that volume flux makes sense only 
when one has in mind inner and outer solutions of a comprehensive velocity field. 

0 

37 F L M  48 
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The notions of volume flux and entrainment are creatures of theory, in the case 
of a jet, rather than experiment. In  order to appreciate that important but subtle 
point, suppose that an expression is known for the mean axial flow q ( x , r )  
within the turbulent region of a jet. Then the volume flux Q can be calculated at 
each station x, provided the radial integration of rUii converges. The local entrain- 

4 ' 0 ~  
6 

U P ,  
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FIGURE 27. Radial mean-speed profiles a t  five stations dong the jet axis: (a)  withoutforcing, 
and ( b )  with 2 yo forcing at a Strouhal number of 0.30. The stations z/D are specified near 
the ordinates of the profiles, which are arranged to suggest the spatial structure of the jet. 
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ment is &Q/dx, which means that the jet induces an external potential flow as 
though it were a line sink of strength d&/dx. One can show on the basis of simi- 
larity arguments that dQ/dx  must approach a constant value k Q J D  far down- 
stream, where Q, is the volume flux out the exit and k is B dimensionless constant 
(cf. Wygnanski 1964). As a result, the axial component of induced potential flow, 
say U,(X,Y) ,  approaches kQJ4mDr at great distances r from the jet axis. The 
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FIGURE 28. Radial intensity profiles of the axial component of turbulent velocity: 
(a)  unforced, and (b )  forced at a level of 2 yo and a Strouhal number of 0.30. 
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quantity rU, does not fall to zero as r approaches infinity, and the volumeflux in 
the induced potential flow is  in$nite. The flux Q therefore cannot be defined in 
terms of the net flow U = + U,, but only in terms of the inner rotational part V,. 

The quantity measured experimentally is U ,  so a somewhat arbitrary judg- 
ment must be made to isolate V,. The judgment was not very dificult in practice. 
We replotted the data of figure 27 and others downstream in the form of dimen- 
sionless flux profiles ( r /R)  U(x,r) /U, .  The potential tails of the flux profiles 
were obvious, and we simply faired the curves to zero before performing 

1 I I 

4 

3 

2 
2 

FIGURE 29. Axial profiles of volume flux, normalized on the flux out the jet exit. The 
round data symbols denote the unforced case, and the square symbols represent compar- 
able data from Sami et al. (1967). The triangular symbols denote the case of 2 yo forcing 
a t  a Strouhal number of 0.30. 

planimeter integrations. Hopefully the faired profiles were good representations 
of ( r /R)  Ui(x, r)/Ue, which could perhaps be measured objectively by conditioning 
the velocity mean on the presence of turbulence. 

The resulting normalized flux profiles QIQ, are presented in figure 29. The 
circular data points represent the unforced jet, and the triangular points represent 
the jet under the forcing conditions u,/Ue = 2 yo, St = 0.30. The square points 
were obtained by integrating the velocity profiles published by Sami, Carmody 
& Rouse (1967), the same standard being used for fairing the outer part of their 
curves as for ours. The agreement between their data and our own for the unforced 
jet is impressive, especially since their Reynolds number was 2.2 x 105. 

In the absence of forcing, the volume-flux profile is seen to be linear for x/D 
both large and small, with slopes 

0*136Q,/D (x/D 6 2), 
0.292QJD ( x / D  2 6), 

measured from figure 29. The entrainment dQ/dx  is therefore constant both near 
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to and far from the jet exit, in accord with similarity arguments (Wygnanski 
1964). Wygnanski cited figures implying that dQ/dx = 0-128 &,ID in the mixing- 
layer region near the jet and O-456Qe/D far downstream. The latter value is 
much higher than we measure and is found to result from an assumed functional 
form of U(x, r )  inappropriate for calculating volume flux. To make sure of the 
downstream limit, we calculated the volume flux of the asymptotic jet profile 
measured by Wygnanski & Fiedler (1969), withthe result that dQldx = 0.263 QJD. 
The constant is only 10 % short of the value 0-292 measured from figure 29 and 
is probably more reliable, because Wygnanski & Fiedler took pains to miti- 
gate room drafts. The entrainment rates dQ/dx = 0.13Qe/D near the exit and 
0.27 &,ID far downstream should both be accurate to within & 0-01 &,ID. 

Forcing under the conditions ue/Ue = 2%) S t  = 0.30 is seen from figure 29 
to enhance entrainment in the interval x/D = 0 to 6 and particularly in the last 
two diameters of that interval, beyond the point xlD = 4 where the vortex puffs 
attain their maximum intensity. Further downstream the volume-flux profile 
attains the same slope as the unforced case, the virtual origin having been drawn 
upstream about two diameters. The shift of virtual origin was discussed in 
connexion with figure 15 and can now be understood as the result of enhanced 
entrainment in the interval x/D = 4 to 6. 

We now take up the second topic of this section, the iduence of forcing on 
background turbulence, which means any fluctuations not bound into the driven 
fundamental or its harmonics. Periodic forcing might reasonably be expected 
to suppress the larger scales of background turbulence, because big eddies would 
tend to become locked into the forcing frequency. The simplest statistical quan- 
tity bearing on that conjecture is P(f),  the spectrum of axial velocity fluctuations 
at a fixed point (x, r ) .  In  the unlikely event that forcing bound up all background 
turbulence, then P ( f )  would comprise a sequence of spikes at the forcing frequency 
and its harmonics. If forcing had n o  effect on the background, then P ( f )  would 
consist of spikes superposed on a broad-band component identical to the spec- 
trum that exists in the absence of forcing. The measured spectrum should lie 
between the extremes. 

An on-line computer determined the spectra by means of fast Fourier trans- 
formation (Pao, Hansen & MacGregor 1969). The program uses the raw linearized 
hot-wire signal for computing the mean and a high-pass filtered version for com- 
puting fluctuation quantities; filtering trims off the direct current to improve 
resolution. The window of the Krohn-Hite Model 330 band-pass filter lay be- 
tween 0.2 Hz and a high frequency selected to control aliasing. Both the raw and 
filtered signals were sent through Dynamics Model 7514 amplifiers and shielded 
coaxial cables to an IBM Model 1827 analogue-to-digital converter and Model 
360-44 computer, the transmission system being free of distortion up to 2 x lo4 
Hz. The continuous signals were converted to 1.8 x lo3 samples per second with 
a resolution of 14 bits plus a sign bit, and the samples were processed in lots of 
8192 dictated by the computer memory capacity. Three hundred lots were typi- 
cally processed to ensure convergence, which was monitored through intermedi- 
ate print-outs. Since only the larger scales of turbulence were of interest, the 
spectra could be confined below 9 x 103Hz and in some cases below 103Hz. 
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FIGURE 30. Turbulence spectra at x/D = 4 and (a) r /R = 0, ( b )  r /R = 1.0, and (c) 
y / R  = 1.5. The square data points denote the unforced case, and the round data points 
denote the case of 2 yo forcing at a Strouhal number of 0.30. The computer evaluated many 
more data than are shown. The dashed spike in part (a)  represents a pure sine wave with 
the power of the fundamental. 
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Spectral windows of 0.078 Hz and 0.24Hz were used to resolve the forcing fre- 
quency and its f i s t  two harmonics, and the results were overlapped with broad- 
band spectra obtained with a 2.18Hz window. Each time a spectrum was 
measured, the root-mean-square fluctuation u was obtained both from the 
spectrum and by the usual analogue method. The result always agreed within 
2 2 %. Analogue checks of several spectral points fell within k 10 yo of the digital 
values. 

Six spectra are presented in figure 30. Each was measured a t  the axial station 
x/D = 4, and parts (a) ,  (b ) ,  and (c) of the figure correspond to the radial locations 
r/R = 0,  1.0, and 1.5. The square data points represent the unforced jet, and the 
round data points show the spectral consequences of forcing under the conditions 
ue/Ue = 2 yo, St = 0.30. The data points are spaced for visual convenience and 
represent only a fraction of the computer output. The dashed spike in figure 
30(a) has the same power content as the turbulence fundamental but was 
generated by feeding a 185 Hz sine wave through the digital system. The artificial 
spike is included to show that the digital filter window is narrow compared with 
the width of the broad-band spectrum underneath. 

Each forced spectrum has definite peaks at the forcing frequency 185Hz 
and its first two harmonics. For the most part forcing does suppress background 
turbulence, the exception being a t  r/R = 1-5 in the frequency interval 20-160 Hz, 
asshowninfigure 3O(c).Figure 3O(b),obtainedwiththehot-~ireprobeatz/B = 4, 
r/R = 1 in the midst of the mixing layer, shows that the 185Hz fundamental 
attracts both higher and lower frequency eddies, though the effect is not so 
pronounced as one might have wished. Suppression of the background is most 
evident in figure 30(a), whose ordinate is expanded by a factor of ten relative to 
the others. Figure 30(a)  was obtained with the hot-wire probe at  x/D = 4, 
r /R  = 0, just inside the tip of the potential core. Forcing is seen to diminish and 
gather up the naturally occurring bell-shaped spectrum, almost fixing the phase 
of the big eddies that leave their signature in the potential core. 

With respect to aerodynamic sound production, the important question is 
whether forcing imposes order on the potential flow outside the mixing region, 
because a fluctuating exterior potential gives rise to sound. Unfortunately a 
hot-wire anemometer is useless outside the rotational core of the jet: the steady 
component of flow is too weak to sweep away the hot-wire wake, and the signal 
is meaningless. The appropriate measurement could be made outside a high- 
speed subsonic jet, where the strength of pressure fluctuations would permit the 
use of a microphone in the near field. We hope such an experiment will be taken 
up in the future. 

9. Comparison with stability theory 
The reader may have noticed the omission of one easily measured property 

of the forced waves, namely their lengths. Wavelength measurements have 
been deferred to this section so that they could be set into a theoretical frame- 
work. They have some surprising implications for the stability theory of waves on 
a jet column. 
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In  order to compare theory and experiment, we suppose that the instantaneous 
axial component u*(x, t )  of velocity on the centreline has the form 

u* = uTeaxcosk(x-ct). 

k is the wave-number, a the spatial amplification rate, and c the phase velocity 
of the forced wave, all three parameters being real. The wavelength h is defined 
as the distance between every other zero intercept of u*, or as the distance 
between consecutive peaks. The two definitions give the same length A, related 
to k by the formula k = 27r/h. The phase velocity c equals fh, f being the known 
forcing frequency. The amplification rate a can be taken as proportional to the 
slope of the straight segment of a semi-logarithmic amplitude profile like those of 
figure 24. Admittedly the straight intervals are not extensive, and one could 
question whether exponential growth occurs anywhere. The profiles curve up- 
ward just downstream of the exit, probably because the uniform surging in the 
exit plane relaxes into the shape of a linear eigenmode. The profiles curve 
downward beyond x /D  = 3 as the jet ceases to resemble a uniform column. 
Within a restricted interval, however, the forced mode may behave like a linear 
wave on a doubly infinite jet column, and that is the issue which measurements 
of h can clarify. 

We carried out the measurements by positioning the hot wire on the centre- 
line, noting the location of a wave peak on the screen of an oscilloscope triggered 
by the loudspeaker input, then translating the hot wire downstream without 
changing the phase of the trigger, until a new peak coincided with the location 
of the old. The net translation of the hot wire was the wavelength A,  which is 
tabulated below for Strouhal numbers St ranging from 0.15 to 0.80. The signal 

St 0-15 0.20 0.25 0.30 0.35 0.40 
AID 5.75 3.87 3.17 2.38 1.83 1.69 

St 0.45 0.50 0.55 0.60 0.70 0.80 
AID 1.44 1.23 1.13 1.06 0.91 0.81 

TABLE 4. Wavelengths of the forced modes 

displayed on the oscilloscope screen was unfiltered, since no filtering was needed 
for repeatable measurements. The forcing amplitude was chosen at each Strouhal 
number so that the wave was linear over most of the hot-wire displacement 
interval, which bracketed the station x / D  = 4 except in the cases of very long and 
very short waves. The measured wavelength was found to depend only weakly on 
the initial position of the hot wire. 

The linear stability theory of waves on a uniform jet column was developed 
by Batchelor & Gill (1962) and extended to compressible flows by Lees & Gold 
(1966). For purposes of analysis, the wave is conveniently expressed in complex 
form, 

where a is the complex wave-number a, + ia,, and w is the complex frequency 
w, + iw,. By solving for velocity potentials within and without the jet column 

u* = uTei(ax-wt) 
9 
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and matching displacements and pressures across its boundary, Batchelor & Gill 
derived the following eigenvalue equation for axisymmetric waves : 

K;(aR) lo(aR) 

U, is the jet speed and R its radius, in line with the notation of this paper. I, and 
KO are modified Bessel’s functions of the first and second kinds. 

The real and imaginary parts of the eigenvalue equation constitute two rela- 
tions among the four quantities a,, a,, w,, w,. Before solving the eigenvalue 
equation, one usually assumes a restriction on the physical nature of the wave, 
the conventions being that it grows in time but is purely oscillatory in space, 
a, = 0,  or that it grows in space but is purely oscillatory in time, w, = 0. The 
first case, temporal instability, is easier to treat, because the arguments of the 
Bessel’s functions are real and the eigenvalue equation can be solved directly for 
w , ( q )  and wi(a,). Batchelor & Gill have carried out that analysis. The second 
case, spatial instability, is complicated by the fact that the eigenvalue equation 
cannot be solved analytically for w,(a,) and a,(@. It is necessary to solve for w 
over the complex plane a, determine the locus a,(a,) along which w, = 0, and 
finally evaluate w,(a,) along that locus. We executed that program on an IBM 
360-44 computer, in the belief that spatial instability would bear directly on 
the orderly structure of jet turbulence. 

The quantities of physical interest are k, c,  and a, which have the forms 

c = w,/a, (spatial) 

a =  -a i I k = a, 

in the case of spatial instability. The temporal case would seem incompatibIe 
with experiment, because the hot-wire signal u*(q t )  is indeed periodic in time 
but inhomogeneous in space. The definitions of k and c are the same, but the 
spatial growth rate a is foreign, strictly speaking, to the hypothesis of temporal 
instability. If temporal growth is assumed to occur locally in co-ordinates 
moving with the phase velocity, however, then the temporal growth rate wi can 
be transformed into a spatial growth rate wi/c = a,wi/wr. The result is a temporal- 
instability model of the forced modes, capable of being compared to experiment 
through the prescription 

(temporal). 1 k = a, 

c = w,/a, 

a = arwi/w, 

Of course we believed that temporal instability would be irrelevant, but the 
belief proved wrong. 

The eigenvalue equation cannot be solved in general without numerical work, 
but the asymptotic forms of Bessel’s functions yield analytical solutions in the 
limits kR .+ 0 and kR + co. The limits are worth studying, because they embody 
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the essential differences between spatial and temporal instability. Thus, in the 
limit of short waves as kR --f co, 

and 

kR-& (temporal), 

kR + O(kR)-l  (spatial), 
aR+ { 

(f + & (temporal), 
C 

1 + ~ (spatial). 
4kR 

In  the limit of long waves as kR + 0, 

aR + (kR)2 (- + l o g y ) '  (temporal or spatial), 

and 

(temporal), 
( ~ c R ) ~  kR 

c, p++ogx 
-+ ' 11 - (3 l o g y  + 1) (spatial), 

where A = 1.1229, a constant involved in the asymptotic expansion of KO.  It is 
immediately apparent from the limits above that the spatial theory and its 
temporal analogue predict broadly similar values for the dimensionless growth 
rate aR, but that the dimensionless phase velocities c/U, behave very differently. 
As kR increases from zero, the phase velocity c/U, of a temporally growing in- 
stability decreases from unity and tends toward an asymptote clue = +. The 
phase velocity of a spatially growing instability rises above unity and eventually 
settles back toward an asymptote clue = 1. Short spatially growing waves 
propagate at  the centreline speed U,, while short temporally growing waves 
propagate at  the average of the speeds inside and outside the jet column, which 
is+ V,. 

The dimensionless amplification rate aR and phase velocity clV, are plotted 
against the dimensionless wave-number kR in figures 31 and 32. The solid curves 
are the dispersion relations for spatially growing waves. The dashed curves 
apply to the temporally growing analogue and are taken from the work of 
Batchelor 85 Gill (1962). The data points were obtained from table 4 through the 
relations k = 2r/h and c = fA explained earlier in this section. 

The theoretical dispersion relations behave as anticipated from the asymptotic 
formulas. For both spatial and temporal instabilities, the amplification rate aR 
rises monotonically with wave-number kR. In  accord with the discussion of 95, 
neither the spatial nor temporal theory singles a mode of maximum growth 
rate. Figure 31 shows an unexpected consequence of spatial theory, namely a 
band of highly unstable but very long waves ( A  > 1 4 0 )  lying above the main 
sequence in the (kR, aR) diagram. Those waves correspond to a gross surging of 
the jet column but are probably too long to have meaning in any physical context. 
Figure 32 shows that the dimensionless phase velocity clue of temporally growing 
waves decreases monotonically from 1 to 4 as kR increases from 0 to co. The phase 
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FIGURE 31. Spatial amplification rate as a function of wave-number. The solid curves 
result from the theory of spatially growing waves, and the dashed curve results from a 
transformation of temporal theory. The experimental datum is the maximum amplifica- 
tion rate of the preferred fundamental, as determined from figure 24. 

-- 
I I I 

0 1 2 3 
kR 

FIGURE 32. Phase velocity as a function of wave-number. The solid curve represents 
spatial theory and the dashed curve temporal. The data are computed from table 4. 
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velocity of spatially growing waves, by contrast, always satisfies the inequality 
c/U, 2 1 and reaches a maximum of 1.31 at k R  = 1-15. 

The surprising aspect of figures 31 and 32 is the relation of the experimental 
data to the theories. The black point in each figure denotes the preferred mode, 
Xt = 0-30, and is based, in the case of figure 31, upon the maximum slope of the 
lowest filtered profile in figure 24. No other accurate amplification rates are 
available. The amplification rate predicted by temporal instability theory is 47 % 
high, and the prediction of spatial theory is much higher. Neither theory predicts 
the amplification rate a t  St = 0.30 correctly, but the data plotted in figure 32 
do coincide with one of the theoretical dispersion relations c(kR)/U,, the one cor- 
responding to temporal instability. The agreement is excellent up to kR = 2.5, 
beyond which the measured phase velocities lie somewhat above the theoretical. 
The dispersion relation c(kR)/U, for spatially growing waves is wholly inconsistent 
with the data. Plausible as it seems a priori ,  an exponential spatial instability 
must be ruled out as the mechanism of vortex puffs. 

We are faced with a curious anomaly. The temporal instability theory of 
Batchelor & Gill should be irrelevant to the experimental situation but appears, 
in an important sense, to be right. Our own spatial instability theory, tailored 
especially for the experiments, seems to be wrong. The issue is important, because 
spatial instability theory has lately come to be regarded as logically superior to 
temporal theory. Usually the two are compared for slowly growing waves, in 
which case their predictions are similar. Here the waves grow rapidly, the dis- 
persion relations are distinct, and the data point unambiguously to the temporal 
instability theory. 

The failure of spatial instability theory may be connected with the boundary 
conditions at downstream infinity. The waves are supposed to diverge exponen- 
tially to infinity, but in practice non-linearity inhibits the divergence. However 
small the perturbation at  x /D = 0, the departure of spatial instability theory from 
a practical flow becomes exponentially large toward downstream infinity. The 
departure may induce large distortions over the whole field, even where the original 
wave i s  weak enough to be linear. Because the problem is elliptic, an exponential 
divergence downstream is inconsistent with linearity everywhere. A temporally 
unstable wave a t  least has the merit of being rigorously linear for small times. 
Apparently it is more advantageous to preserve reasonable boundary conditions 
than to simulate spatial growth by means of an exponential divergence. 

10. Concluding remarks 
Ail incompressible turbulent jet can sustain orderly modes of axisymmetric 

flow, including a preferred mode of frequency f = 0*30U,/D, wavelength 
h = 2.38 D, phase velocity c = 0.71 U,, and maximum rate of spatial amplification 
a = 0-58/R. 

The modes obey the dispersion relation c(k)  derived by Batchelor & Gill 
(1962), but nothing in linear stability theory seems to distinguish the mode at  
k = 1-32/R, which attains the highest possible amplitude under non-linear 
saturation. Indeed the preference is lost a t  sufficiently low amplitudes of forcing, 
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according to the contour maps of figures 18 and 21. The preference arises outside 
the scope of linear theory, yet linear theory should not be irrelevant. The hot-wire 
signal of figure 11 is nearly sinusoidal even at the highest forcing amplitude, and 
the harmonic plotted in figure 12 saturates at  only one-fifth the amplitude of the 
fundamental. 

Batchelor & Gill’s eigenvalue equation contains a hint of the connexion be- 
tween linear stability theory and the non-linear selection mechanism. The real 
limits presented in Q 9 were taken from the following complex limits of the eigen- 
value equation: 

- 1 + (aR)-l as IaR1 -+ 00, 

as laRl - to .  
2 A 

Whatever assumption is made about spatial or temporal growth, it is clear that 
w / a  approaches a complex constant in either limit IaRI + 00 or JaBl -+ 0, which 
means that eigenmodes of very long or very short wavelengths tend to be non- 
dispersive. Modes having wavelengths comparable to the jet diameter are highly 
dispersive. 

To appreciate the dynamical role of dispersion, consider a growing eigenmode 
uf expi(ax - wt). The jet column is non-linear, so the fundamental eigenmode 
drives a first harmonic of the form uzexpi(2ax-2wt). If the fundamental is 
highly dispersive, then the harmonic is not an eigenmode, and u i  is a constant 
and relatively small fraction of u:. The ratio uz/uT involves a resonance denomi- 
nator, however, which falls to zero when 2a  and 2w themselves satisfy the eigen- 
value equation. a, w and 2a, 2w can be simultaneous solutions of the eigenvalue 
equation only in regimes of aR where the ratio w / a  is constant, two such regimes 
being the limits la1 + co and IaRI + 0. Waves of extreme lengths are non- 
dispersive, resonate with their harmonics, and drive them to large amplitudes. 
Waves of intermediate lengths produce harmonics that are far from being eigen- 
modes, so the harmonics are weak. 

At the next level of interaction, uf expi(ax - wt) and ug expi(2ax - 2wt) couple 
to drive a higher harmonic and also a wave uz expi(ax - ot) having the form 
of the fundamental. To account for non-linear selection, one need only assume 
that uz subtracts from u;, in other words, that the harmonic reacts back on the 
fundamental to inhibit its growth. The fundamental able to attain the largest 
amplitude is then the wave that generates a harmonic least effectively, the wave 
furthest removed from resonance with its harmonic, the most highly dispersive 
wave on the j e t  column. It cannot have an extreme length, since extremely long 
or short waves are almost non-dispersive. It must have an intermediate length 
proportional to the jet diameter, presumably the length h = 2.380 of the mode 
preferred in the experiments. 

The foregoing ideas fit the general theory of Stuart (1960) and Watson (1960) 
for the evolution of non-linear dispersive waves. If the assumption is retained that 
the jet is a uniform column surrounded by a vortex sheet, then the radial eigen- 
functions are Bessel’s functions, and one comes immediately to the core of 
Stuart and Watson’s theory, the derivation of coupled, first-order ordinary 
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differential equations for the fundamental amplitude, the harmonic amplitude, 
and a property of the mean field, which in this case is the radius of the jet. Work is 
already under way on the temporal version of the theory, in which the eigen- 
function amplitudes and mean radius depend strictly on time. The temporal 
theory has the advantage of a dispersion relation c (k )  in accord with experiment, 
because the theoretical phase velocity does not vary with wave amplitude. 
It may be possible to account for the fact of spatial growth by means of an 
integral formulation (cf. KO et al. 1970). In  any event, we can reasonably look 
forward to  a theoretical model of axisyrnmetric vortex trains, with the preferred 
Strouhal number of 0.30 emerging by calculation. 

Our research has benefited from the encouragement and occasional active 
participation of Earl1 Murman and of Steven Orszag, during his summer visit to 
The Boeing Company in 1969. The course of the research was influenced by 
stimulating discussions with several workers in the field, notably Hans Liepmann, 
John Ffowcs Williams, Erik Mollo-Christensen, Peter Bradshaw, and Lester 
Kovasznay. We owe thanks to them and to Frederick Lange, whose technical 
assistance expedited every phase of the program. 

This paper deals chiefly with experiments on the orderly structure of jet 
turbulence. A mathematical study is under way and should be presented in a 
second paper, to be followed in due course by a third on a technological applica- 
tion of the phenomenon. 
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Plate I 

(Pacifig p. 592) 
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(b )  

FIGURE 4. Schlieren photographs of the 1 in. air jet, made visible by CO, 
at Reynolds numbers of (a) 1.87 x lo4 and (b)  5.27 x lo4. 
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(b )  

1.05 x 104 to  7.5 x 104 BS foiiows: (a) 1.05 x 104; ( b )  1.95 x 104; (c) 3.09 x 104; ( d )  4.35 x 104; 
( e )  5.14 x 104; (f) 6.52 x 104; (9)  7.5 x 104. 

FIGURE 6 .  Spark photographs of the 1 in. fog jet. The Reynolds numbers range from 
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( e )  
FIGURE 6(c-e) .  For legend see plate 4. 
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Plate 5 
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(9)  
FIGURE S ( f ,  9). For legend see plate 4. 
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Plate 6 
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(4 
FIGURE 26. Schlieren photographs of the 2 in. jet seeded with CO,. Part ( a )  shows the un- 
forced jet at an exit speed of 103 ft/sec and a Reynolds number of 1.06 x lo5. The remaining 
parts show the jet under 2 yo forcing at Strouhal numbers of (b)  0.30 and ( c )  0.60. 
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